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All data originates in real-time!
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127.0.0.1 user-identifier frank [10/0ct/2000:13:55:36 -0700] "GET
/apache_pb.gif HTTP/1.0" 200 2326 <R,AMZN,T,G,R1>
Common Log Entry NASDAQ OMX Record
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“SeattlePublicWater/Kinesis/123/Realtime” —
412309129140

MQTT Record

"payerld": "Joe",

"productCode": "AmazonS3",
"clientProductCode": "AmazonS3",
"usageType": "Bandwidth",

“operation": "PUT", <165>1 2003-10-11722:14:15.003Z

"value™: "22430", mymachine.example.com evntslog - ID47

"timestamp": "1216674828" y -example.com evntsiog o
[exampleSDID@32473 iut="3" eventSource="Application

} n n H H ne s n
Metering Record eventID="1011"][examplePriority@32473 class="high"]
Syslog Entry

Health Monitors




But, analytics to gain insights is usually
done much, much later.




!/Insights are perishable.



Batch analytics operations take too long
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Compress the analytics lifecycle
Maximize the value of data
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#Streaming



Streaming technology is necessary to detect
and act on real-time perishable insights.



Kinesis Data Streaming Services

Get actionable insights quickly
@ Ingest data
Process data
analytics/ML,
alerts, actions

© 2018, Amazon Web Services, Inc. or Its Affiliates. All rights reserved.
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Robust Random Cut Forrest

/ — \ Summary of a dynamic data stream, highly
——— efficient, wide number of use cases...
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Random Cut Tree
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Recurse: The cutting stops when

Range-biased Cut each point is isolated.



Random Cut Forest
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Each tree built on a random sample.



Random Sample of a Stream

Reservoir Sampling [Vitter]
Maintain random sample of 5 points in a stream?

Keep @ heads with probability %

Discard @ tails with probability %



Insert — Case |

P Start with the Root
If the point falls inside the bounding box
follow the path to the appropriate child
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What is an Outlier?

Your theory is wrong
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Anomaly Score: Displacement

A point is an anomaly if its insertion greatly increases the tree size
( = sum of path lengths from root to leaves
= description length).

Inlier:
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Anomaly Score: Displacement
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NYC Taxi Data
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Robust Random Cut Forests
Quick Summary

Random forests (RF) define ensemble models;
The cut in RCF corresponds to specific choice of partitioning;

Take a set of points, compute bounding box;

Choose an axis proportional to the length (biased), then choose an
uniform random cut in range;

Recurse on both sides.

|solation Forests: Partition at random, dimensions unbiased;
Why RCFs? Can maintain RCF tree distributions efficiently and do
so online as data is streaming in. Distance preserving.



Robust Random Cut Forest Based Anomaly Detection On Streams
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Abstract

In this paper we focus on the anomaly detection
problem for dynamic data streams through the
lens of random cut forests. We investigate a ro-
bust random cut data structure that can be used
as a sketch or synopsis of the input stream. We
provide a plausible definition of non-parametric
anomalies based on the influence of an unseen
point on the remainder of the data, i.e., the exter-
nality imposed by that point. We show how the
sketch can be efficiently updated in a dynamic
data stream. We demonstrate the viability of the
algorithm on publicly available real data.
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a point is data dependent and corresponds to the external-
ity imposed by the point in explaining the remainder of the
data. We extend this notion of externality to handle “outlier
masking” that often arises from duplicates and near dupli-
cate records. Note that the notion of model complexity has
to be amenable to efficient computation in dynamic data
streams. This relates question (1) to question (2) which we
discuss in greater detail next. However it is worth noting
that anomaly detection is not well understood even in the
simpler context of static batch processing and (2) remains
relevant in the batch setting as well.

For question (2), we explore a randomized approach, akin
to (Liu et al., 2012), due in part to the practical success re-
ported in (Emmott et al., 2013). Randomization is a pow-
erful tool and known to be valuable in supervised learn-



What we are going to see...




“Uf my thme-series Aata with 30 features yields an wnusually high anomaly
score. How do | explain whyy this particular polnt in the time- SEries LS unusual?
[.1 tdeally 'm looking for some way to visualize “feature importance” for a
specific data point.”

——- RobLn Meehan, Inastght.com



What is Attribution?

It’s the ratio of the “distance” of the anomaly from normal.
(It’s a distance in space of repeated patterns in the data.)

(Score™(p) — Score *(p)) %
Score ™ (p) OOO

A'(p) =



What is Attribution?
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'Public Data: http://www.nyc.gov/html/tlc/html/about/trip_record data.shtml



http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml
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The Moving Example

A Fan/Turbine

1000 pts in each blade
Gaussian, for simplicity
Blades designed unequal
Rotate counterclockwise

l((

3 special “query” points

100 trees, 256 points each

06

04

02 ¢

02 ¢

04 |

06 ¢

o

N

p1=(-0.4,0)
p2=(0,-0.4)
p3=(0.4,0)

06

04

0.2 04

06




Anomaly Score at P1 S

o8 | i s 3
Emmm) e o .
28 : ; . 02 L / \
Anomaly, Score at p1 ——
26 04 | ®
24 + 06 |
272 ~016 -oj4 ~oj2 o ojz oj4 oje
o 27
c))g 18
e Blade overhead = Not an anomaly
< 14 |
12 +
1t . . D)
L — What is going on at 90 degrees:
06

0 50 100 150 200 250 300 350 400
Degree of Rotation



All 3 Blades

os | oty
L B3ca0 e
04
45 : : : : : :
Anomaly Score atp1 — 02 |
Anomaly Score atp2 —
4 Anomaly Score at p3 —— 1 ol . g .
02 | / \
35 t -
04 ®
3 T 06

Anomaly Score

0 50 00 150 200 250 300 350 400
Degre ¢ of Rotation

06 04 -02 0 02 04 06



[ J [ J
Attribution W ER T
04

02 t

=) e o .
° , o o
x coordinate’s contribution for p1? ol
04 L ™
45 T T T T T 06 |
Anomaly Score at p1 Contribution x
4 Anomaly Score at p1 Contributony —— 06 04 02 0 02 04 06
r Anomaly Score at p1 (sum) —— ]
35
o | p1is far away in x-coord most of the time
§ 25| . .
5 But what is happening to y?
15 -
1
05
0

0 50 100 150 200 250 300 350 400
Degree of Rotation



Directionality

25 |

15 +

05 |

Blade is below
Blade is above
Anomaly Score at p1 Contributiony (sum) ——
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Slowly rotating away

7 Total score remains high

Sharp transition when the blade
moves from above to below at p1!
Total score plummets.
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Forecasting

T
ta
Bifocal Forecast

Exhibit B: Forecasting using RCFs
Not just the next value!

Ability to “see past” anomalies
Auto-detect periodicity ...

| | | | |
0 200 400 600 800 1000 1200

Forecasting implies missing value imputation!
Wait, this is just a sine wave ... its easy ...



Maybe not...
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Realistic Data?

ECG (one lead)
Periodicity unclear ...
Shingle Size =185
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Test on hold out data

) W

MMM/\/\M




Paper In preparation!



A New Explanation for Anomalies?

“This point is an anomaly because it is 3x the forecast”.

Makes It easier to set triggers/alerts.



Semi-Supervised Learning on Data Streams

Amazon.com | MW“/\AM

Orders per
Minute

One Hour
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PAGED 9

-_don’t bother

Can we incorporate user feedback
to make the system smarter over time?
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Step 1: (Pre-process) Fragment the data (shingling)
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Step 1: (Pre-process) Fragment the data (shingling)
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Step 1: (Pre-process) Fragment the data (shingling)
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Step 2: Embed these fragments into a metric space
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Expert provides few labels. Goal to “spread” this label to the remaining data.
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sustained dip (Sev-1)
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Step 3: Compute distances between fragments



sustained dip (Sev-1)
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Step 4: Construct a “similarity graph”



sustained dip (Sev-1)
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Step 5: “Label propagation” on this graph (zhu Ghahramani Lafferty icmL ‘03]
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Output: Label on each unlabeled fragment



In a long stream...

Day 1 Day 2 Day 3 Day 4 Day 5



sustainéd dip (Sev-1)
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Fragments keep coming in




Our Algorithm in Pictures

Maintains the graph
over a sliding window
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Our Algorithm in Pictures

When a new point arrives
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Update weights 4
by star-mesh transform
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Streaming Timeseries Classification

Orders
per
minute

iyt

sustained dips

Amazon orders dataset

For 1 year of data: Accuracy > 95%
(just one labeled instance)
(memory consumed = 0.4 MB)



Proceedings of the 35th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018.

Semi-Supervised Learning on Data Streams via Temporal LLabel Propagation

Tal Wagner! Sudipto Guha? Shiva Prasad Kasiviswanathan? Nina Mishra

Abstract ing of metrics arising from medical patient signals (ECG,
EEG. fall detection), data centers (network. I/O and CPU
utilization), or a camera mounted on a semi-autonomous car
(for road conditions and obstacle detection). In these sce-
narios, unlabeled data is continuously streaming, but only a
small number of manually labeled examples are provided —
either at the beginning of the stream or as occasional user
feedback. We want algorithms that leverage both inputs and
learn how to classify stream elements, such as ECG arrhyth-
mias, network intrusion alerts or driving conditions. Several
other applications are given in (Goldberg et al., 2008), who
defined a similar model, and in (Krempl et al.. 2014).

We consider the problem of labeling points on a
fast-moving data stream when only a small num-
ber of labeled examples are available. In our
setting, incoming points must be processed ef-
ficiently and the stream is too large to store in its
entirety. We present a semi-supervised learning
algorithm for this task. The algorithm maintains a
small synopsis of the stream which can be quickly
updated as new points arrive. and labels every
incoming point by provably learmning from the
full history of the stream. Experiments on real

datasets validate that the algorithm can quickly In practice. this setting requires algorithms that run under
and accurately classify points on a stream with a severe time and memory constraints, since the labels are
small quantity of labeled examples. expected in real-time and the stream is generally too large

to fully store in the memory. This poses a major challenge:
How can we leverage the entire stream history to label a
1. Introduction new point, when we can only store a tiny fraction of it?
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SPOTLIGHT: Detecting Anomalies in Streaming Graphs

Dhivya Eswaran®, Christos Faloutsos*®, Sudipto Guha', Nina Mishra’

*Carnegie Mellon University ' Amazon
{deswaran,christos } @cs.cmu.edu, {sudipto,nmishra} @ amazon.com

ABSTRACT

How do we spot interesting events from e-mail/transportation logs?
How can we detect port scan or denial of service attacks from IP-
IP communication logs? In general, given a sequence of weighted,
directed/bipartite graphs, each summarizing a snapshot of activity
in a time window, how can we spot anomalous graphs containing
the sudden appearance or disappearance of large dense subgraphs
(e.g.. near bicliques) in near real-time using sublinear memory? We
propose a randomized sketching-based approach called SPOTLIGHT,
which guarantees that an anomalous graph is mapped ‘far’ away
from ‘normal’ instances in the sketch space with high probability
for appropriate choice of parameters. Extensive experiments on
real-world datasets show that SPOTLIGHT (a) improves accuracy
by at least 8.4% compared to prior approaches, (b) is fast and can
process millions of edges within a few minutes, (c) scales linearly
with the number of edges and sketching dimensions and (d) leads to
interesting discoveries in practice.

ACM Reference Format:

Dhivya Eswaran®, Christos Faloutsos*, Sudipto Guha®, Nina Mishra®. 2018,
SPOTLIGHT: Detecting Anomalies in Streaming Graphs. In Proceedings
af ACM SIGKDD (SIGKDD °18). ACM, New York, NY, USA, 9 pages.
https:ddoi.org/10.475/123_4
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Figure 1: Sudden appearance of a dense subgraph at i=3.

attacks (port scan, denial of service) in network communication
logs, interesting/fraudulent behavior creating spikes of activity in
user-user communication logs (scammers who operate fast and in
bulk), important events (holidays, large delays) creating abnormal
traffic infout flow to certain locations, etc. We are able to discover
several of the above phenomena in real-world data (e.g., Fig. 2c).
We highlight two important aspects of the above definition. The
(dis)appearance of a large dense subgraph is anomalous only if it is
sudden, 1.e., it has not been observed before or is not part of a slow
evolution (e.g., steadily growing communities). Similarly, the sudden
(dis)appearance of a large number of edges is anomalous only if
the edges form a dense subgraph (the so-called lockstep behavior
indicating fraud [5]). Fig. 1 illustrates this. In the evolution of a
bipartite graph, e.g., user edits page, an anomalous dense directed
suberaph appears at f=3, indicating a possible edit-war between
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